The Big Four
SPC, LPC, PI, & Coliform
2011 Wisconsin Dairy Field Representative Conference
February 8th, 2011

Keith L. Engel
GEA Farm Technologies

Scott Rankin
University of Wisconsin-Madison
Food Science
The “BIG 4”

—Milk quality reports

• *Bacteria counts*

• *Lab Pasteurized Counts*

• *Coliform Counts*

• *PI Counts (Preliminary Incubation)*
You have got the information – now what?
Who levels?

- **SPC (Standard Plate Count)**
 - Less than 5,000
 - >10,000 = action is needed

- **PI (Preliminary Incubation Count)**
 - Less than 10,000
 - > 25,000 = action is needed

- **LPC (Lab Pasteurized Count)**
 - Excellent = less than 100
 - >200 = action is needed

- **E-coil (Coliform Counts)**
 - Excellent = less than 50
 - >200 = action is needed
What do you think about these counts?

<table>
<thead>
<tr>
<th></th>
<th>Coi</th>
<th>LPC</th>
<th>PLC</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>10</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>50</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>20</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
What about these counts?

<table>
<thead>
<tr>
<th>Coli</th>
<th>LPC</th>
<th>PPLC</th>
<th>CPC</th>
<th>PPC</th>
<th>PLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>89%</td>
<td>17</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>50</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>220</td>
<td>34</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>170</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>620</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>20</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Milk Quality Tests

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Name of Test</th>
<th>High</th>
<th>Acceptable</th>
<th>Excellent</th>
<th>Dirty Equipment</th>
<th>Infected Udders</th>
<th>Environment</th>
<th>Improper Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPC</td>
<td>Standard Plate Count</td>
<td>>10,000</td>
<td>1,000-10,000</td>
<td><1,000</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IPC</td>
<td>Lab Pasteurized Count</td>
<td>>100</td>
<td>10-100</td>
<td><10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PI</td>
<td>Preliminary Incubation</td>
<td>>15,000</td>
<td>5,000-15,000</td>
<td><5,000</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Acidity</td>
<td></td>
<td>>16</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSMC</td>
<td>Direct Microscopic Count</td>
<td>>10,000</td>
<td>1,000-10,000</td>
<td><1,000</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Coliforms</td>
<td></td>
<td>>100</td>
<td>10-100</td>
<td><10</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment</td>
<td>Physical Screen</td>
<td></td>
<td>Subjective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Added</td>
<td></td>
<td>Any</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Mastitis Related:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCC</td>
<td>Somatic Cell Count</td>
<td>>200,000</td>
<td>100,000-200,000</td>
<td><100,000</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staph. aureus</td>
<td>Mastitis Pathogen</td>
<td>>150</td>
<td>50-150</td>
<td>None</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strep. agalactiae</td>
<td>Mastitis Pathogen</td>
<td>>200</td>
<td>50-200</td>
<td>None</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mycoplasma sp.</td>
<td>Mastitis Pathogen</td>
<td>Any</td>
<td>None</td>
<td>None</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What now?

• Procedure For Troubleshooting
 ▪ Complete Evaluation of System
 – Physical inspection
 – Wash Analysis
 – Collect data on temperature (wash water, milk, review temperature charts, etc.)
 – What are this dairies counts, what is the history, how do they compare to each other?
 • SPC (Standard Plate Count)
 • PI (Preliminary Incubation Count)
 • LPC (Lab Pasteurized Count)
 • E-coil (Coliform Counts)
 • SCC (Somatic Cell Count)
Using counts together to aid in diagnosis

<table>
<thead>
<tr>
<th>LPC</th>
<th>Coliform Count</th>
<th>LPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
<td>No Problem</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>Teat Hygiene/Environment</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>Machine Hygiene</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>Teat Hygiene/Machine Hygiene/Incubation</td>
</tr>
</tbody>
</table>

* Laboratory Pasteurized Count

A 2x2 table of Coliform Count and LPC can be used to localize the source of a high SPC.
Part 1a. Routine Bulk Tank Milk Quality Analysis

Bulk tank cultures can be used to diagnose equipment cleaning and sanitation problems, incubation of bacteria in the milk handling system during milking, inadequate pre-milking hygiene, and mastitis. Here is a list of goals, diagnoses and action levels for each type of test.

- **SPC**
 - Good: 1000
 - Warning: 5000
 - Action Needed: 10,000
 - 100,000

- **LPC**
 - Good: 10
 - Dirty Equipment: 50
 - 100
 - 500
 - 1000

- **Coli**
 - Good: 10
 - Dirty Cows: 50
 - Incubation: 100
 - 500
 - 1000

- **SCC**
 - Good: 100,000
 - Warning: 500,000
 - Action Needed: 1,000,000

GEA Farm Technologies – The right choice.
• Standard Plate Count
 - Improper milking hygiene
 - Inadequate cleaning of equipment and milk tank
 - Inadequate cleaning of non-CIP parts (i.e.: tank valves, etc.
 - Failure to sanitize before milking
 - Improper or inadequate cooling
 - Worn rubber goods
 - Milk filters used for more than 4 hours.
 - Inadequate drainage
 - Large number of mastitis cows (rare)
• Preliminary Incubation Count
 - Dirty milking equipment
 - Dirty udders
 - Improperly sanitized equipment
 - Early fall-off of the milking unit
 - Sediment in milk
 - Cracked and worn rubber goods
 - Poor Udder Preparation
 - Cooling
 - Contaminated water
 - Improper drainage – water sitting in pipeline.
Gasket Needs replacing
• Lab Pasteurized Count
 ▪ Inadequate equipment washing – DIRTY EQUIPMENT
 ▪ Inadequate milk tank washing – DIRTY EQUIPMENT
 ▪ Cracked and worn rubber goods
 ▪ Prevalent when soil visible after wash
 ▪ Biofilms (seen most in extended milking)
Neck of Receiver Jar by Probes
• Coliform Counts
 ▪ Indication of fecal matter in milk
 ▪ Milking wet dirty udders
 ▪ Cow Cleanliness
 ▪ Liner Head Cleanliness
 ▪ Properly set ATO delay and retract
 ▪ Towel sanitation
 ▪ Use of contaminated water

• Somatic Cell Count
 ▪ On rare occasions, the SPC may be elevated due to cows with high SCC caused by streptococcus agalactiae
Coliforms
• Complete Evaluation of System
 ▪ Physical Inspection
 – Pipeline (elbows, tees, unions)
 – Milk units
 – Inflations
 – Weigh jars
 – Sanitary traps
 – Pulsation lines
 – Header tank
 – Swing pipe
• Washing System Performance

- Water Quality
- Requirements of CIP Cleaning
- Evaluating Wash Systems
- CIP Wash Cycles
- Cleaning Recommendations
System Design

Type of system:
Number of units
Shell and liner type:
Take-offs:
Milk line diameter:
Wash line diameter:
Automatic washer type:
Air injector type:
Milk/wash valve type:
Are there restrictors on jetters or jetter hoses?
Are there restrictors on added water line?
Hole size =
• Complete Evaluation of System (cont.)

 ▪ Physical Inspection
 – All valves
 – Milk pump seal
 – Plate coolers
 – Detacher sensors
 – Milk hose
 – Pulsation hose
 – Sample valves
 – Butterfly valve (Plug)
• Complete Evaluation of System (cont.)
 - Milk Tank
 - Check interior for cracks
 - Upper walls of tank
 - Milk outlet valve
 - Agitator paddle
 - Agitator seal
 - Measuring stick
 - Sight glass
• Complete Evaluation of System (cont.)
 - Milk Tank
 – Check for proper Cooling
 – Temperature recording charts
 – Compressor run time
 – Blend temperature (< 50° F)
 – Air flow through condensers
<table>
<thead>
<tr>
<th>Location</th>
<th>Color</th>
<th>Texture</th>
<th>Acid Soluble</th>
<th>Detergent Soluble</th>
<th>Chlorine Soluble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver</td>
<td>White</td>
<td>tacky</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Neck of Receiver</td>
<td>Yellow/White</td>
<td>Slimy</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Receiver Gasket</td>
<td>Yellow/White</td>
<td>Slimy</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Gaskets by Milk Pump</td>
<td>Yellow</td>
<td>Slimy</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Observation of CIP Procedures

Does the sanitary trap valve close (trap-out) during the CIP procedure? Y N

Is air drawn into units or wash lines at the wash sink? Y N

Is the ball removed from the sanitary trap during washing? Y N

Do more than 5 gallons of water drain from the balance tank after the wash cycle? Y N

Does the milk pump run continuously during the wash cycle? Y N

Is there any visible residue on system components? Y N
Water Quality and Quantity

<table>
<thead>
<tr>
<th>Water hardness = 1GPG</th>
<th>Water iron content = PPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Water test results: PPM Buffers</td>
<td>Amount of water used per cycle = gallons</td>
</tr>
<tr>
<td>Is a water softener installed?</td>
<td>Is water softener charged and functioning?</td>
</tr>
<tr>
<td>Water Heater: Temperature = °F</td>
<td>Capacity = gallons</td>
</tr>
<tr>
<td>Wash sink capacity: gallons</td>
<td></td>
</tr>
</tbody>
</table>
• Complete Evaluation of System
 ▪ Check Proper Milking Hygiene
 – Udder and flanks clipped
 – Sanitizer in wash water
 – Use of individual paper towels
 – Dry teats before machine attachment
 – Stripping of foremilk
 – Cleanliness of milker’s hands and outside of claw
Observation of CIP Procedures

- Evaluate if CIP procedures are being followed correctly.
- Always consider the 6 requirements of cleaning when troubleshooting any build-up.
- Check temperature monitoring devices.
- Measure chemical concentrations
- Record temperature of the water returning to the wash sink at the beginning and end of each cycle
- Complete a sketch of the CIP system and flow circuit to document conditions for future reference and consultation
Requirements for C.I.P. Cleaning

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Water Volume</td>
<td></td>
</tr>
<tr>
<td>Chemical Balance</td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td></td>
</tr>
<tr>
<td>Drainage</td>
<td></td>
</tr>
</tbody>
</table>

GEA Farm Technologies – The right choice.
Adequate chemical levels, drainage, and temperatures.

Keith L. Engel: GEA Farm Technologies
C.I.P. Wash Cycles

Pre - Wash Rinse

- No chemical
- Circulate and divert
- Starting temperature: 95 – 110° F (35-43° C)

Purpose:

- Removes some soil load - Up to 98%
- Warm the equipment surface
C.I.P. Wash Cycles

Wash Cycle

- Chlorinated alkaline cleaner
- Circulate 8-10 minutes (Make sure to have a minimum of 20 “GOOD SLUGS” in wash cycle!)
- Starting temperature: 160° F (70° C)
- Discharge temperature: 120° F (50° C)
- Wash solution pH: 10 – 11.5 (minimum)
- Active alkalinity: 250 – 350 ppm (minimum) Higher depending system size & run time.
- Active chlorine: 75 – 100 ppm (minimum)

Purpose: Removes Milk Fat, Protein and Minerals.
“Active Alkalinity” Requirements

1 – Small stall barns, no complications = 200 – 250 ppm “Active Alkalinity”, 75 minimum “active chlorine”.

2 – Larger stall barns with 3” milk line or complications (Y line), parlors without meters and without complications = 300 – 350 ppm “Active Alkalinity”, 90 minimum “active chlorine”.

3 – Parlors with meters = 500 – 550 ppm “Active alkalinity” Glass meters (Surge meters) can wash @ 400 ppm “active alkalinity”, 100 minimum “active chlorine”.

4 – Industrial Dairies = *Add 100 ppm “Active Alkalinity” to parlors extended run times or complications (Added to category 2 or category 3 dairies.),

* These are guidelines, the proper level for a system should be benchmarked versus success.

** Make sure detergent used has adequate sequestration to meet dairies water needs (hardness, total dissolved solids (TDS), etc. and possible temperature issues.
C.I.P. Wash Cycles

Acid Rinse

- Acid Rinse
- Circulate 5 minutes
- Starting temperature: 95 – 110° F (35-43° C)
- Acid solution pH: 2.5 – 3 (optimum)

Purpose:

- Removes chlorine/detergent residues
- Remove minerals
- Inhibits bacteria growth
- Increase chemical activity
C.I.P. Wash Cycles

Sanitize Cycle

- Sanitizer (EPA registered product)
- Run cycle 30 minutes before milking
- Circulation time: 5 minutes
- Starting temperature: 95 – 100° F (35-38° C)
- Active chlorine: 100 – 200 ppm (optimum)

Purpose: Kill bacteria
C.I.P. Wash Cycles

Detergents - Basic Ingredients

- Alkalinity emulsifies fats.
- Chlorine peptizes Proteins.
- Sequestration Agents tie up Solids and carry them out.

C.I.P. Cleaning Requirements

- Time
- Velocity
- Temperature
- Volume
- Chemical Balance
- Drainage

C.I.P. Cleaning Cycles

- Pre-Wash Rinse
- Wash Cycle
- Acid Rinse
- Sanitize Cycle
Make sure you have even flow of wash solution through all units.
“Blow By”

Figure 9: Moving the location of the injector may correct a blow-by
Milk Line Slug Flow Analysis

• Set air injector open time

• Check slug velocity and adjust air admission rate

• Set air injector closed (off) time

• Final vacuum recorder testing and unit flow tests
• Make sure you have enough water flow through meters & peripherals.
Air Injector Calculation

<table>
<thead>
<tr>
<th>Farm Name:</th>
<th>Case Study - Small Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>10/16/2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slug Speed (ft./Sec.)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Feet of Milk Line/Receiver</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Divided by</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>4.36</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>3.63</td>
</tr>
<tr>
<td></td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>3.30</td>
</tr>
<tr>
<td>Milk line diameter</td>
<td>3</td>
</tr>
<tr>
<td>Minimum Slug Size</td>
<td></td>
</tr>
</tbody>
</table>

Need a minimum 4 gallon slug to wash a 3 inch line.

<table>
<thead>
<tr>
<th>Number of receivers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receiver Jar Size</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Divided by 3</td>
<td>equals 5.0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Divided by 5</td>
<td>equals 3.0</td>
</tr>
</tbody>
</table>

| Slug Size should be between | 4.0 and 5.0 gallons |

<table>
<thead>
<tr>
<th>Restrictor Size</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of unit restrictors</td>
<td>0</td>
</tr>
<tr>
<td>3/16</td>
<td>equals 0.0 gallons/minute</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of unit restrictors</td>
<td>0</td>
</tr>
<tr>
<td>3/16</td>
<td>equals 0.0 gallons/minute</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Added Water line</td>
<td>1</td>
</tr>
<tr>
<td>3/16</td>
<td>equals 18.0 gallons/minute</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Added water line</td>
<td>0</td>
</tr>
<tr>
<td>1/2</td>
<td>equals 0.0 gallons/minute</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total | 18.0 gallons/minute |

<table>
<thead>
<tr>
<th>Total gallons per minute</th>
<th>18</th>
<th>divided by 60</th>
<th>equals 0.30 gallons/second</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Slug Size required</th>
<th>4.0</th>
<th>divided by 0.30 gal/sec.</th>
<th>equals 13.33 OFF Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>divided by 0.30 gal/sec.</td>
<td>equals 16.67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Original AI Setting</th>
<th>4.5 ON Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON Time = 5.5 seconds</td>
<td></td>
</tr>
<tr>
<td>Off Time = 10 seconds</td>
<td></td>
</tr>
</tbody>
</table>

* Loose wash plug
** Small Universal trap

Gallons/minute

Tight wash plug
Vacuum Levels Equal on both channels

80 feet (24 Meters) divided by 2.75 seconds equals 29 feet/second (8.8 Meters)

Travel Distance divided by time equals feet/meters per second

One vertical division on graph equals one second
Common Problems

• Water Quality, Quantity, & Temperature
 ▪ The concentration of cleaning chemicals may need to be adjusted for hard water
 ▪ Adequate quantity of water so that the wash vat does not suck air.
 ▪ Water temperature.

• Unit Flow Measurement in Milking Parlors
 ▪ Look for uneven distribution of water to the milking units.
Observation of CIP Procedures

• Evaluate if CIP procedures are being followed correctly.
• Check cooling performance by observing blend temperatures and cooling times
• Measure chemical concentrations
• Record temperature of the water returning to the wash sink at the beginning and end of each cycle
• Complete a sketch of the CIP system and flow circuit to document conditions for future reference and consultation
Requirements for C.I.P. Cleaning

Most Common Causes of C.I.P. Cleaning Problems

- Mechanics
- Water Temperature
- Water Quality
- Detergent Dosage/rate
- Milking Hygiene

Optimizing Protocols to Improve Milk Quality

GEA Farm Technologies – The right choice.
5 Things to the Dairy Should Monitor to Maintain Low Counts on your dairy.
1) Do a walk though after starting the wash cycle.

Have whomever starts the wash cycle stick around long enough to make sure:

- All the liners are plugged into jetters properly.
- Observe if water is running through all the units and meters.
- Listen to see if air injector is functioning properly.
- Observe if the milk pump is pumping adequately.
2) Temperature

Monitor Temperature:

- Monitor temperature charts. Benchmark the end wash temperature with the high temperature on the your chart.
- Utilize wash vat temperature recorders when possible.
- Or simply keep a thermometer around and catch the ending wash temperature periodically.
3) Scheduled Maintenance before failure.

- Have replacement schedule for all rubber goods, diaphragms, wash vat drains, chemical peristaltic tubes, etc.
- Record replacing these items so that you can alter your changing schedule if items are wearing out before your regularly scheduled date.
- Clarify who is responsible for this.
4) Monitor Chemical Usage

- Mark detergent, acid, and sanitizer drums weekly so that you can see if chemicals are getting dispensed at your normal usage levels.
- Work with a route person that keeps good records and can recognize if your usage on these items is up or down.
5) Monitor Quality Counts

• Monitor SPC, LPC, PI, Coliform, and SCC counts.
• When they are high something is causing it.
• Use quality history and events at the dairy to troubleshoot high counts quickly.
Reality Checks

Investigations many times include individuals searching for a single cause of the problem.

“While driving to the farm, many times we hope and pray we’ll find something wrong so we can fix it.”

Unfortunately this leads to a band-aid approach and seldom treats the cause of the problem.

A complete evaluation of the system should be done.
Thank-you!

Keith L. Engel
Keith. Engel@ geagroup.com

GEA Farm Technologies